
13. V. N. Nikolaevskii, E. A. Bondarev, M. I. Mirkin, et al., Movement of Hydrocarbon Mix- 
tures in a Porous Medium [in Russian], Nedra, Moscow (1968). 

14. Mo D. Rozenberg, S. A. Kundin, A. K. Kurbanov, et al., Filtration of a Gasified Liquid 
and Other Multicomponent Mixtures in Oil-Bearing Strata [in Russian], Nedra, Moscow 
(1969). 

HELICAL FLOW OF A NONLINEARLY VISCOPLASTIC 

LIQUID IN AN ANNULAR CHANNEL 

Yu. A. Bukhman, V. N. Zadvornykh, 
A. I. Litvinov, and Z. P. Shul'man 

UDC 532.5421532.135 

This article presents analytical expressions describing the flow of a generalized 
nonlinearly viscoplastic liquid in a concentric annular channel under complex 
shear. The results of numerical calculations are analyzed. 

The theoretical and experimental investigation of helical flow in pipes was dealt with 
by many authors of whom we mention [1-5]. Rivlin [i], e.g., obtained some general relations 
for the helical flow of a generalized non-Newtonian liquid in an annular channel. The experi- 
mental verification of the generalized regularity of flow under conditions of complex shear 
was carried out by Vinogradov et al. [2]. Coleman et al. [3] obtained general relations for 
the distribution of longitudinal and angular velocities in a channel and the flow rate of a 
generalized non-Newtonian liquid. However, numerical calculations with their aid were car- 
ried out for the first time by Prokunin et al. [4] for an exponential liquid. All these 
authors dealt with liquids that do not have a limit shear stress. As far as the few existing 
investigations dealt with viscoplastic liquids, only the qualitative aspect of the problem 
was studied, and this does not make it possible to carry out numerical calculations and their 
corresponding analysis. For instance, Myasnikov [5] obtained a phase diagram expressing 
qualitatively the nature of profiles of longitudinal and angular velocity of the helical 
flow of a Bingham--Shvedov liquid. The present authors obtained a closed system of equations 
in dimensionless form enabling them to calculate the principal characteristics of the helical 
flow of a nonlinearly viscoplastic liquid in an annular channel, both for the normal and the 
inverse hydraulic problem. 

We examine laminar steady-state flow in a concentric annular channel formed by two long 
cylinders with radii a and b (a < b), with constant pressure gradient --P = --Ap/~, acting 
along the cylinder axis z. The inner cylinder rotates at constant angular velocity ~o. As 
rheological model we use the generalized model of Shul'man which is adequate for the rheo- 
logical behavior of various paint and varnish compositions, pulps, foodstuffs, cement and 
clay suspensions, and a number of other non-Newtonian media: 

T is the tangential stress intensity, 

~=0, ~<~o- (1) 

= + (2 )  

~ V ( ~ ) =  + (r = . ( 3 )  

Expressions (1)-(3) are written with a view to the axisymmetric nature of the helical 
flow. For the stress components Trz and Tr0 the following relations ensuing from the equa- 
tions of equilibrium of an element of the liquid [I] are correct: 
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For the components of the deformation rate of the helical flow in the directions z and 

we have 

= ~ ?, (6) 

0); 'r'rO = --?. (7) 
r~ 

For the general case we assume that within the flow there is a core with the boundaries 
r~ and r= (r~ < r=); by integrating Eqs. (6) and (7), on condition of adhesion to the channel 
walls and with a view to relations (1)-(5), we obtain for the velocity field of the flow the 
following system of equations in dimensionless form: 

Senm/n i [51--~ f(~) d~ ( ~ . 2 ~  1), (8) 
V(~)=  2(1--k)[5 '$/n 1 4 [5(4) 

" ~ , - - 4  2 f(4) d~ ( / ~ , ) ,  (9)  Sen "qn _ j { [5 (~) 
v (~) = 2 (1 - -  k) ~ '~ 

kSenm/'~ i [~.z [(~) d~ (~ . , .~ .~1) ,  (10) 
a ( ~ ) =  2 ( 1 _  k) [5,$/, ~ ~ 4 ~ [5(~) 

kSen~/~ ~ [5~ f(~) d ~ +  1,,_ ( k ~ ) ,  (1t) 
Q(~)---- 2 (1- -  k) ~'$/~- ~ ~* [5 (4) Ro 

where 

f ( ~ )  : [ [ ~ ( ~ ) l / n  [5~/n]m; (12) 

4 

On the boundaries ~i and ~2 the following conditions apply: 

V(~I)=V(~) ,  Q(~I)=Q(~2). (14) 

Hence, with a view to (8)-(11) we obtain 

d~=O,  (15) 
4 [5(4) ~, ~ [~(4) " 

h 1 
(16) 

k [5 (4) ~, 4 [5 (~) k Ro Sen~/~ 

The d i m e n s i o n l e s s  bounda r i e s  of the  core  of  the  f low $~ and ~2 a re  de t e rmined  as the  r o o t s  
of  the  e q u a t i o n  

We substitute relations (12) and (13) 
mining the boundaries of the core thus" 

where 

[(~) = 0. (17) 

into (17) and represent the equation for deter- 

~ (~2 - ~L) ( P  - ~$) + [5] = o, (18)  

~_ : ( ] /  i~ + 4[5, --[50)/2; (19) 

~ + :  (]/r [5~_t_ 4151 + [50)/2 . (20) 
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Dependence of the thickness of the core A[ on the St. 
Venant number (Sen) for k = 0.6 and n = 3: I) Ro = i; 2) 2; 3) 41 
4) 8. 
Fig. 2. Dependence of the critical Rossby number (Ro*) on Sen for 
k = 0.6: i) n = i; 2) 2; 3) 3. 

In the general case the expression for the flow rate through the annular channel has 
the form 

b 
Q =  2 ~  ~ ru  (r)  dr .  

J 
a 

(21) 

After some transformations and the use of relations (8)-(11) we obtain from expression 
(21) that 

~. (p _ ~ 2 ) ~ j  2 p(~) f(~) d~-}- i" (Px-- ~) ~ 2  /r d~ -[- (1 --  k.) (1Sen,~/'~-k2)p'~/'* = O. (22) 

Thus we obtained the closed system of equations (15), (16), and (22) with respect to 
the unknowns ~o, 61, B2 with the specified parameters Sen, Ro, k, n, m. Knowing 13o, we can 
determine the pressure losses by known formulas in fractions of the dynamic shear stress To" 

21 Ap --= to (23) 
[~ob 

or via the velocity head 

where 

l 9 W 2  
k p  = L 2(b--a)  2 ' (24) 

)~ _ 8 ( 1 - - k ) S e n  
~oRe (25) 

Having calculated Ap, we can find the torque applied to the inner cylinder: 

: (26) 
M = ~ 2 A p b  3. 

We point out that for m = n = i and the corresponding choice of the other dimensionless 
parameters, expression (15) corresponds in regard to accuracy to relation (2.15) obtained by 
Myasnikov [5]. 

The system of equations (15), (16), and (22) was solved numerically. In addition to 
calculating the unknowns Bo, BI, and B2, we also determined the velocity profile by depen- 
dences (8)-(11). These calculations fully confirmed Myasnikov's qualitative conclusions 
concerning the nature of the velocity profiles in complex shear and contained in [5]. That 
means that the following cases of helical flow are possible: without core; with a core 
within the flow and a characteristic protrusion on the profile of the longitudinal velocities~ 
with a core in the flow without the characteristic protrusion; with a core adjacent to the 
outer cylinder. 

915 



'0 2 ~',~ 6' 10 t 2 ,-','6' ,."J 2 # Sen 

Fig. 3. Dependence of the parameter Bo on Sen: a) for 
k = 0.6 and n = 3: i) Ro = 0.06; 2) 0.2; 3) i; 4) i0; b) 
for k = 0.6 and Ro = i: i) n = i; 2) 2; 3) 3. 

All this also applies to the flow of nonlinearly viscoplastic liquids. In the special 
case, when ~o = 0 and m = n, the obtained solution coincides completely with the solution 
presented by Bukhman et al. [6]. 

Let us examine some results of calculations carried out for m = n. The dependence of 
the thickness of the core A~ = f(Sen, Ro) on the criteria of similarity is shown in Fig. i. 
It can be seen from an analysis of this dependence that for any Ro number the core becomes 
thinner when Sen is lower. The core also becomes thinner when Ro becomes smaller (with the 
same Sen). With increasing Sen the dependence of A~ on Ro manifests itself more weakly. 
For instance, a change of Ro from 8 to 2 with Sen = i00 leads to a decrease of A~ by about 

23%, and with Sen = i000 to a decrease of about 9%. 

Figure 2 shows the dependence of the critical Rossby numbers at which the core vanishes, 

Ro* = f(Sen, n). With constant n, Ro* decreases with increasing Sen. 

With increasing n (Sen = const), Ro* increases, and all the more rapidly, the larger 

Sen is. 

The dependence ~o = f (Sen, Ro) is presented in Fig. 3a. For any fixed Ro, Bo also 
increases, i.e., the coefficient of hydraulic resistance % decreases (see formula (25)). 
Reduced Ro with any fixed Sen (i.e., increased rotational speed of the cylinder with constant 
flow rate) also leads to increased ~o and corresponding decrease of %. For instance, a 
change of Ro from 1 to 0.06 with Sen = i00 leads to a decrease of % to one half. 

Figure 3b shows the dependence Bo = f(Sen, n). With fixed Sen an increase of n leads 
to reduced $o and increased %, and consequently to pressure loss due to friction. 

A more thorough physical analysis can be carried out fairly simply by examining the 

effect of the actual parameters (Q, ~o, To, ~, a, b, etc.) contained in the dimensionless 
Ro and Sen numbers on the behavior of these criteria. For instance, an increase of the flow 
rate Q (with the other parameters unchanged) leads to a decrease of Sen and an increase of Ro. 
An analogous pattern is found when To, ~o, etc. decrease. Calculations showed, in particular, 
that when the rotational speed is constant, increased flow rate entails a reduced moment 
applied to the inner cylinder. 

Thus it is obvious that notation of a cylinder substantially affects the nature of the 
velocity profiles, the dimensions and position of the core, the magnitude of the moment and 
of the pressure losses when a nonlinearly viscoplastic liquid flows in an annular channel. 

NOTATION 

Trz, TrS, stress components; d, s, integration constants; To, limit shear stress; m, n, 
indices of nonlinearity of the rheological model; a, b, radii of the inner and outer cylin- 
ders, respectively; y, deformation rate intensity; n, analog of plastic viscosity; p, density 
of the liquid; u, ~, running axial and angular velocities, respectively, of the flow; r~, r2, 
core boundaries; ~o, angular velocity of rotation of the inner cylinder; r, 8, z, cylindrical 
coordinates; Q, volume flow rate of the liquid; %, coefficient of hydraulic resistance; W = 
Q/~ (b 2 -- a2) , mean flow rate over the section; M, torque. Dimensionless parameters: k = 
a/b; ~ = r/b, coordinate; V = u/W, running flow velocity; ~ = ~a/W, angular velocity of the 
flow; ~i, ~2, core boundaries; A~ = ~2 -- ~I, thickness of the core; Bo = 2Tol/Apb; BI = 

916 



2d//Apb2; B2 = 2s//APb3~ Sen = T0[2(b -- a)/nW] n/m, St. Venant number~ Re = pW2[2(b -- a)/ 
~w]n/m, Reynolds number; Ro = W/~oa, Rossby number. 
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UNSTEADY TWO-DIMENSIONAL FLOW OF A COMPRESSIBLE 

NON-NEWTONIAN FLUID IN A LONG ANNULAR CHANNEL 

CAUSED BY THE MOTION OF AN INSIDE PIPE 

S. D. Tseitlin and M. S. Tarshish UDC 532.542:532.135 

We solve the unsteady, two-dimensional problem of the hydrodynamics of a compres- 
sible non-Newtonian fluid connected with the study of the flow in an annular chan- 
nel caused by the motion of an inside pipe. 

One of the complex operations in drilling is the lowering and raising of the column of 
drill pipes, which must be done regularly to replace the drill bit when it becomes dull. We 
note that in deep and superdeep drilling, the lowering and raising operations take up a 
large fraction of the total time and consist of the periodically repeated lowering (raising) 
of the column of drill pipes by a length of one drill-pipe stand (about 12-36 m). After 
this, the following stand is attached (disconnected), and the next lowering (raising) is 
carried out. These operations lead to the formation, in the drilling mud, of strong, 
periodically repeated disturbances, in the channel of the borehole, which, after propagating 
along the channel, and being reflected from its ends, superimposed, and damped, produce dyna- 
mic loads on the walls of the well, which often lead to different complications during dril- 
ling. Analogous effects arise during lowering of the column of the casings. 

A number of theoretical studies devoted to this question are known [i, 2]. However, 
because of the complexity of the problem being considered, these studies completely or par- 
tially neglect such important factors as the unsteadiness of the phenomenon, the compressi- 
bility of the fluid, the non-Newtonian properties of the fluid, and the two-dimensionality 
of the flow picture. 

We attempt to eliminate the indicated shortcomings. 

We consider the following problem. We have a long vertical pipe of length L, radius 
R2 with a closed end (Fig. i), filled with a non-Newtonian compressible fluid with specific 
density p, having known rheology. Inside the pipe there is lowered another pipe, coaxial 
with it, having length LI < L, radius RI with an end that is closed by means of a valve, 
through which we can pump a fluid in a single direction with volume flow rate q1(t). The 
upper end of the annular pipe is open and communicates with the atmosphere. 
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